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ABSTRACT k
The relationship between the number of solutions to the i
complementarity problem, the right-hand constant vector q ;
and the mgtrix M 1is explored. The main results proved in
this work are summarized below. - i
The numter of solutions to the complementarity problenm
is finite for all q ¢ R" 4if and only if all the principal
subdeterminants of M are nonzero. The necessary and
sufficient condition for this solution to be unique for each
qe€ R" 1s that all principal subdeterminants of M are
strictly positive. When M > O , there is at least ome
complementary feasible solution for each q ¢ R" if and
only if all the diagonal elements of M are strictly
positive; and, in this case, the number of these solutions
is an odd number whenever q 1s nondegenerate.. If all
principal subdeterminants of M are nonzero, then the
number of complementary feasible solutions has the same
parity (odd or even) for all q ¢ R" which are nondegenerate.
Algso, 1f the number of complementary feasible solutions is a
constant “>r each q ¢ R" » then that constant is equal to c
one and M is a P-matrix. § ﬁ
Most of the proofs are based on mathematical induction. P
Counterexamples are given to show that the theorems fail if i
any of the hypotheses are not satisfied. %
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ON THE NUMBER OF SOLUTIONS TO THE COMPLEMENTARY
QUADRATIC PROGRAMMING PROBLEM

by 1

Katta G. Murty

1. INTRODUCTION:

1.1 The complementary quadratic programming problem is that of finding

column vectors w = (wi) e R" and z = (zi) e R© satisfying

we= Mz +q
1)

sz,z:O,sz-O

where M = (mij) is a given n x n square matrix and q = (qi) is a

T
given n x 1 column vector and w denotes the transpose of w . R

is
the n-dimensional real Euclidean space.

1.2 Because w , z are nonnegative, the constraint

sz-iglwizi-O» wizi-o for each 1 =1, ..., n.
Thus if one of the variables in the pair Wyos 2y is positive, the other
should be zero. Hence the constraint sz = 0 will be referred to as the
complementarity condition and the problem is sometimes known as the
complementarity problem of order n .

1.3 Consider the quadratic programming problem v

Minimize sz
Subject to w- Mz =g

w:O,z:O.

If (1) has any solution (w;z) then that solution also solves the




quadratic programming problem. Conversely if the minimum value for the
objective function in the quadratic programming problem is zero, then any
optimal solucion to it also solves (1).

Thus solving (1) is equivalent to finding out whether the minimum
objective value in the above quadratic program is zero or strictly positive.
Hence the problem (1) is known as the complementary quadratie programming
problem.

1.4 Cottle and Dantzig [1] and Lemke [7], [8]) have shown that all the
problems in linear programming, convex quadratic programming and also the
problem of finding a Nash equilibrium point of a bimatrix game, can be posed
in the form of (1). For other applications of (1) see Scarf [13]., Lemke
and Howson [7], [9] have developed a simple algorithm for solving (1)
wvhich is based on pivot steps.

Lemke [7], Cottle and Dantzig [1] have shown that (1) has a solution if
all the principal determinants of M are positive or if M 1s a nonnzgative
matrix with positive elements in the principal diagonal. Lemke [7] has also
given sufficient conditions on M and q wunder which the number of solutions
to (1) is finite.

In this paper our main interest is to examine the relationship of the
number of solutions to (1) to the properties of the given matrices M and
q . The motivation for this problem was provided by Gale when he asked me

to try and prove or construct counterexamples to the following conjectures:

(a) M is a P-matrix if and only if the complementarity problem
has a unique solution for each q eR" .
(b) M >0, 1is a Q-matrix if and only if mgy 2 0 for all

1-1’00-,"0
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(¢) If M 1is a Q-matrix, the complementarity problem has an odd
numt.er of solutions whenever q is nondegenerate with respect

to M.

The result of the investigation is the present work.
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2, NOTATION AND PRELIMINARIES:

2.1 If A {is any matrix, AT denotes its transpose. Ai denotes the
i-th row vector of A and A j denotes the j-th column vector of A . I

denotes the unit matrix.

2.2 A square matrix M 1is called a P-matrix if all its principal sub-
determinants are strictly positive. The gquare matrix M is called
nondegenerate if every matrix A obtained by taking A j to be either
or 1 for each j = 1, ..., n 1is nonsingular. An equivalent

J J
definition is that M 1s & nondegenerate matrix if and only if all its

principal subdeterminants are nonzero. M is called a Q-matrix if problem (1)
has a solution for all q ¢ R" .

2.3 Let A bde any finite set of column vectors in R" . The convex
cone generated by the column vectors in A 1is denoted by Pos {A} . Thus
x ¢ Pos {A} 1if and only if x can be expressed as a nonnegative linear
combination of the column vectors in A .

2n

2.4 Suppose L(q)C R is the linear manifold determined by the

linear equality constraints

wvw-M = gq

chn.chn

without any nonnegativity constraints. The vector (-‘-:—) € L(q) 1if and
only if it satisfies (2). Any (—‘-z'-) € L(q) 1is called a solution. For
convenience we will write down the vector (—';'-) € R2n as (w;2) .

2.5 The convex polyhedron K(q) C L(q) is the set of all feasible

solutions (w;z) which satisfy

S

T —




w-Mz=g )

w2 0, z 20

2.6 A basic feasible solution is a feasible solution (w;2z) e K(q)

such that the column vectors in (3) of the variables w, and 2z, which

3 3

are strictly positive, are linearly independent. Every basic feasible

solution is an extreme point of the convex polyhedron K(q) and vice versa.
2.7 A complementary feasible solution is a feasible solution

(w;2) € K(q) which satisfies the complementarity condition sz =0.

A complementary feasible solution is a solution to (1) and vice versa.

2.8 For each 1 =1, ..., n the varjables w 2z constitute a

S |
complementary pair and each of the variables in the pair is the complement

of the other. 1In the system (1) the column vector I is associated with

3

the variabie. w, and -M is associated with =z

b -3 i’
(1

g -M.J) are the j-th complementary pair of column vectors in (1).

Thus the pair

2.9 A complementary set of column vectors is a set of column vectors

or -M for each

3 3 -3

j=1, ..., n . Thus any set of column vectors containing exactly one vector

{A.j » 3 =1, ..., n} such that A, is either I
from each complementary pair of vectors is a complementary set of column vectors.
The corresponding set of variables is called a complementary set of variables.
Hence there are 2" complementary sets of column vectors.

2.10 Each solution to (1) represents q as a nonnegative linear
combination of some complementary set of column vectors.

Conversely if (A j} is a complementary set of column vectors and if

q € Pos {A g j=1, ..., n}
n
i.e., q= Z 8.A where B8, > 0 for each j
ge1 43 3 -

=0

RS




then a solution to (1) is obtained by setting the variables associated

with the column A 3

all the other variables in (w;z) not in this complementary set equal to zero.
The pos cone generated by any complementary set of column vectors

is known as a complementary cone.

and the union of all these cones is the set of all q for which (1) has

a solution.

2.11 Any set of variables {yl, cees Yy 1oVi41r c o yn} where y_

is either w_ or z
4 r

of variables. The column vectors associated with a subcomplementary set
of variables constitute a subcomplementary set of column vectors.
complementary pair of variables (wi,zi) is the left out complemerntary

pair of variables in the subcomplementary set (yl, I AT AT TIEREY yn} :

2.12 An almost complementary feasible solution is a feasible solution

(w;z) € K(q) such that

2.13 The set Ci(q) is the almost complementary set defined by

b

T
vz e=wz

f.e., w,z, =0

31

Thus there are 2n

equal to B, for j =1, ..., n respectively and

complementary cones

for each r , 1s known as a subcomplementary set

for some 1

for all j ¢ 1, for some 1 .

Ci(q) = {(w;2): (w;2) € K(q) , Wz - w2,

i.e., w,z, =0 for j ¢ 1} .

33

where i 1is any integer from 1l to n .

o




2,14 if xeR", x# 0 then the ray generated by x is

Pos {x} = {y: y =Ax for some A > 0} .

2,15 If xl R x2 e R" R xl # 0 then the set

{y: y = x* + Aax' for some A > 0}

is the half-line through x2 parallel to the ray generated by x1 .
2,16 The column vector q 1is said to be nondegenerate with respect
to M 1if and only if for all (w;z) ¢ L(q) , at most n of the 2n
variables {w, , z,} are zero. Equivalently q is nondegenerate with respect

33

to M if it does not lie in any subspace generated by (n-1) or less
column vectors of (I § -M) . Thus the set of all q which are not
nondegenerate with respect to M belong to a finite number of subspaces
of R".

2.17 Two basic Zeasible solutions (wl;zl) and (wz;zz) are said
to be adjacent extreme points of K(q) 1f every convex combination of
(wl;zl) and (wz;zz) has a unique representation as a convex combination
of extreme points of K(q) . The line segments joining any pair of adjacent

extreme points of K(q) 1s called an edge of K(q) .

2,18 If K(q) 1is nonempty and unbounded, any basic feasible solution of

w-Mz= 0

is known as an extreme homogeneous solution of (3). Any half-line through




.a basic feasible solution in K(q) parallel through the ray generated by

an extreme homogeneous solution of (3), lies in K(q) . Such a half-line
is called an unbounded edge (or extreme half-line) of K(q) 1if every point
on the half line has a unique representation as the sum of a convex combin-
ation of basic feasible solutions of K(q) and a nonnegative linear
combination of extreme homogeneous solutions of (3).

2.19 Consider the set of equality constraints (2) again
weMz+q . (2)

The i-th constraint in this system is
v, = Mi-z + q - (21)

A prineipal pivot in the position (i,i) in (2) consists of the following

steps:
(1) Solve equation (2i) for the variable z, in terms of

zl, 000 zi—l’wi'zi+1’ ooy zn and replace the i-th equation

in (2) by this equation expressing z, 'in terms of
Zys sees By 1oWiaZi 00 ees Zp o
(11) Substitute the expression obtained for 2 in (1) in each

of the other equations in (2).
Thus a principal pivot in position (1,i) 1in (2) can only be performed if
my $ 0 . The result of this principal pivot is to exchange the variables
(wi,zi) and we get a transformed system of equations which has the same
form as (2), but the left-hand set of variables in it differ from the left-

hand set in (2) in one component (the i-th). However, the set of the

complimentary pairs of variables remains unchanged as a result of a principal

pivot.
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2.20 1If a series of principal pivots are performed on the system
(2), then it will be transformed into the system
u=Mv+gq (4)
where each pair (ui,vi) is a permutation of the complementary pair of
variables (wi,zi) . A complementary feasible solution to (4) is a solution

to the system

(5)

2.21 We notice that there is a one to one correspondence between
solutions to (1) and solutions to (5). For example, suppose (5) is
obtained from (1) by making only one principal pivot in which Wy 2

are exchanged, say. Then

~ ~ -~ - - a

w3 2 solves (l)<=>u = (zl,wz, ceey wn) ,

-~

v = (wl,zz, - zn) solves (5) .

In general since u , v 1in (5) are such that (ui;vi) is a permutation
of the variables (wi,zi) , We can construct a solution (;;;) to (5)
corresponding to each solution (;;;) to (1) by taking the same permutation,
and vice versa.
Thus the number of solutions to (1) is invariant under principal pivots.
2,22 Let N be a principal submatrix of M of order s , obtained
by striking off from M all the rows excepting the il’ 1000 is-th rovs

and all but the 1 A3 is-th columns. Let

1,

i . NFTEER
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w=|w w )T £ = (z 2 i
( 1y i L 15)

and Q = (qi 9 osvey qi )T . Then
1 s
w =N+ Q

W>0,£>0, wE=0

is known as a principal subproblem of (1) in the variables (w;§) .

~ L)

2.23 Suppose (w;z) 1s a complementary feasible solution to (1)

such that

a

z, = 0 for all {1 ¢ il or 12, cesy O 18 s

~ a

Let w= (w1 »oeeen W )T and £ = (zi s oeees 2y ) . Then from the
1 8 1 8

definition of the principal subproblem (6) we see that (;;E) solves (6).
2.24 If r 4is any integer, its parity is said to be odd if r is
an odd integer or even if r 1is an even integer. When considering a set
of integers, it is said to be of constant parity if all the numbers in the
set have the same parity.
2.25 A set of cones in R" whose union 1s R" is said to form a

partition of R" 1f each cone in the set has a nonempty interior and the

intersection of the interiors of any two cones in the set is empty.

P " R S—
—— S s -~ e A o S LY A4 WY ——

(6)




11

3. FINITENESS OF THE NUMBER OF COMPLEMENTARY FEASIBLE SOLUTIONS:

3.1 Lemke (7] has shown that the number of complementary feasible
solutions is finite whenever q 1is nondegenerate with respect to M .
Here we determine the necessary and sufficient conditions under which the
number of solutions to (1) is finite for each q ¢ R" .

3.2 Theorem:

The number of complementary feasible solutions is finite for all

q € R" 1f and only 1f M 1is nondegenerate.

Proof:

Suppose there exists a q € R" such that (1) has an infinite
number of distinct solutions. Each solution to (1) represents q as a
nonnegative linear combination of some compl_mentary set of column vectors.
There are only 2" distinct complementary sets of column vectors. Thus if (1)
has an infinite number of distinct solutions, there must exist a complementary

set of column vectors {A.1 , J=1, ..., n} such that

)
Ay, =q
=1 371 )

Yy >0 for each j =1, ..., n

has an infinite number of distinct solutions. (7) is a square system of n
equations in n nonnegative variables. If (7) has an infinite number of

solutions, then the set of column vectors (A, , j =1, ..., n} must be

3

linearly dependent. Since {A ,} 1is a complementary set of column vectors,

3

this implies by the definition in 2.2 that M 1is not nondegenerate.
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To prove the converse, suppose M 1is not nondegenerate.

Case 1: Suppose one of the column vectors of M , say M-l , is zero.
Then let q = (0,1,1, ..., 1)° . Then (w;z) = (0,1,1, ..., 150,0,0, ..., 0)
is a complementary feasible solution for any a > 0 . Thus there are an

infinite number of distinct complementary feasible solutions when

L
q=(0,1,1, ..., T

Case 2: Suppose M-l #0 . Since M 1is not nondegenerate, there

in this case.

exists a complementary set of columns, say {A..1 » J =1, ..., n} which

is linearly dependent. So there exists o = (al, %o shp un)T # 0 such that

n
le A-jaj =0 .

A | Also A-l is either I.1 or -M-l and hence in this case A.1 0.
n

If Z A.j «0,let q= A.1 # 0 . Then every (w;z) obtained by
j-

i setting the variable associated with A-l equal to 1 + a , the variable

' associated with A'J equal to a for J ¥ 1, and all other variables in

(w;2) equal to zero {s a complementary feasible solution for any a >0.

i Hence there are an infinite number of distict complementary feasible solutions

vhen q = A.1 $# 0 1in this case.

| 2 -
If JA,$0,1let q-= JA, . Let
| g=1 3 3=
.: .
! o=  Min (:3—)
j such that c‘:]
ay <0

]
‘ = +» {f there does not exist any aj <0 .

' So 6 >0 . Every (w;z) obtained by setting the variable associated with

for § =1, ..., n and all the other variables in

‘ A-j equal to 1 + Xaj

ey — —

LJ——-&...m - ‘ S i .' ’ . 3 -
. — . o N ' =
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(w;z) equal to zero, is a complementary feasible solution for any X such

that 0 < A < 8 . Hence there are an infinite number of distinct complementary

n
feasible solutions when q = Z A.j # 0 in this case.
I=1
Hence 1f M is not nondegenerate there exists a q # 0 for which (1)

has an infinite number of distinct solutions. This completes the proof of

Theorem 3.2.

3.3 Ccrollary:
If M 1is not nondegenerate there exists a q # 0 for which there are

infinite number of distinct complementary feasible solutionms.

Lo




14

4. UNIQUENESS OF THE COMPLEMENTARY FEASIBLE SOLUTION:

4.1 We will now examine the question of when (1) has a unique solution
for each q ¢ R" while M 18 fixed. Lemke [7], Cottle and Dantzig [1]
have shown that (1) has a solution if M 1is a P-matrix. They have also
shown that the solution is unique if M 1is positive definite. We will

extend these results.

4.2 Theorem:

If M 1is a P-matrix then (1) has a unique solution for each

Proof:

Proof 1s by inductionon n. If n=1, then M= (;11) and M
is a P-matrix = m, 0. In this case q = (ql) . If q 2 0 then
V= (wl) - (ql) and z = (zl) = (0) 1is the only solution to (1). If
q; < 0, then w= (wl) =0 and z = (zl) - (-ql) is the only solution
to (1). So the theorem is verified for n = 1.

Suppose the theorem is true for all complemenfarity problems of order
1,2, ..., n-1 . We will now prove that it also holds for problems of
order n .

In Theorem 6 of [1] Cottle and Dantzig have proved that (1) has at
least one solution when M is a P-matrix. Parsons has proved the same
by using induction on n (Theorem 6.1 of [11]). Thus we need only prove

the uniqueness of the solution. Suppose a solution to (1) is (w;z)

wvhere
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and (8)

~

zJ =0 for all j ¢ 3; ory «e., or jr .

Make a principal pivot exchanging zJ and wj which is possible because
1 1

u3 3 >0 by the P- property of M . The result of this principal pivot
141
is another system of the same form as (1), in which the matrix M' is

again a P-matrix by Tucker's theorem [15].

In the new system make a principal pivot exchanging =z and w

Js 3,

which is possible because ms j >0 by the P-property of M' .
272

Continue making principal pivots until all the original zj 0 0oL zj
1

are exchanged with wj o1 =l=4s wJ respectively. This is possible because
1 r

after each principal pivot we get a new system in which the matrix is again

r

a P -matrix by Tucker's thereom [1§ and hence has strictly positive
elements along the principal diagonal.

Suppose the system obtained at the end is

us= &v + ;
¢)

u>0,v>0,uve=0
By the manner in which ( 9) was obtained from (1) and since (;;;) is a
solution to (1) we note using (8) and 2.21 that ( 9) has a solution in which
ve=0. So in that solution u = ; and since u must be nonnegative,
; 2 0 . Thus by a series of principal pivots we have transformed (1) into
(9) in which &' is a P -matrix (by Tucker's theorem [15]) and ; 20.
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Since M is a P-matrix all its principal submatrices are P-
matrices. Hence by the induction hypothesis all principal subproblems
(defined in 2.22) of (9) have unique solutions. (9) has one solution

u=q,v=0. If (9) has another distinct solution (u*;v*) in which

for some 3§ , vg = 0 , then the principal subproblem of ( 9) in the

variables (ul. odb b uj-l’“j+1’ cees U3 VIs eees vj-l’vj+1‘ S vn)

has two distinct solutions, namely

u = q for each 1 ¥ § and vy - 0 for each 1 ¥ §

and

= yw = gk
u, = u} for each 1 ¢ j and v, = vi for each 1 ¥ j

and these two are distinct because (u*;v*) 1s distinct from (;;0) .
This contradicts the induction hypothesis.
Hence if ( 9) has another solution (u*;v*) distinct from (;;0)

then we must have v* > 0 . By the complementarity constraint

vk > 0 => uyt = 0, Therefore
Mvk = -q < 0

(10)
vk > 0.

This is a contradiction because by the theorem of Gale and Nikaido

(Theorem 1 of [6]) since M 1is a P- matrix.

uv-

A
o

>vs=s(,
v

v
o

Hence ( 9) has a unique solution. By 2.21 we conclude that the solution to

(1) is also unique.

Hence by induction, Theorem 4.2 is true for all n .

T I A A A e - — = N e —— - et e M
. > R . e
R . |
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It is interesting to note that the converse of Theorem 4.2 is also

true. This is proved next.

4.3 Theorem:
If (1) has at most one solution for each q ¢ R" , then M 1is a
P -matrix.
Proof:

Proof is by induction on n . Suppose n =1, Then M= (mll)
and q = (ql) 5
If m, " 0, then 1f q = (ql) = 0, (1) has several solutions,

namely
W= (wl) =0,zm= (zl) for any z, 2 0.

If B, < 0, then if q = (ql) >0, (1) has two distinct solutions,

namely,

W (ql) »y z2=0

o (),

Thus 1f n = 1 , by the hypothesis of Theorem 2 ?, t 0. 350 we must

and

have B, > 0 and hence M = (mll) must be a P-matrix, which proves the
theorem for the case n = 1 . Suppose the theorem holds for all problems of

order (n - 1) or less. We will now show that it also holds for problems

of order n .

S A Nt e - e

.
-
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1f (1) has at most one solution for each q ¢ R" , then every principal

subproblem of (1), has at most one solution for any of its right-hand side
constant vector Q . To prove this consider the subprobler in the variables
w= (wz. HODE wn)r , £ = (zz, conr zn)T . If there exists a

Q= (qz, 5a0h qn)T for which this principal subproblem has two distinct

solutions, namely, (B;E) and (w;) , choose q; to satisfy

q > Z EJ 1j j‘iz Ejmljl s
and let
;1 q, + 322 EJ TR 0
ot ,Zz TR

q
If q = («-Q}-) , then (1) has two distinct solutions, namely

|
]
—
El: €1
:0-'
S
N
]
T
milw
~

and 7~ o

contradicting the hypothesis.

A similar proof holds for all principal subproblems of (1) of order
n - % , and by repeating the argument we see that all principal subproblems
of (1) have at most one solution for all right-hand side constant vectors.
Hence by the induction hypothesis all principal submatrices of M of

order (n - 1) or less are P- matrices. In particular my 2 0 for all

e ——

R e T T e & : |
i i i dddiag ks ala bl ot aio, g TR SRS DR N TR, 3 e --.;v“.‘ LR A &mw 4
" - - & .
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1=1, ..., n.

The matrix M itself should be nonsingular, as otherwise it will not
be nondegenerate, in which case there exists-a q for which (1) has an
infinite number of solutions by Theorem 3.2. So M_l exists. Left
multiplying by M.l problem (1) can be written as

z - M-lw = Q

T (11)
z>0,w>0, zw=0

where Q = -M-lq .

If (1) has at most one solution for each q € R" , then (11) has at
most one solution for each Q ¢ R" . Hence by the arguments used previously,
all principal subdeterminants of M-l of order (n - 1) or less are
strictly positive. Let a be the value of the principal subdeterminant

of M-l obtained by striking off the first row and column from M-l . Then

M1
@ = determinant of M ° 12)

But a >0, m, > 0 . So by (12) the determinant of M is positive.
Also every principal gsubmatrix of M is a P-matrix. Hence M 1itself

is a P-matrix. Hence by induction Theorem 4.3 holds for all n .

4.4 Corollarv:

If (1) has at most one solution for each q ¢ R" (M being fixed)

then it has exactly one solution for any q € R" .

4.5 Corollary:

(1) has a unique solution for each q ¢ R® 4if and only 1f M is

a P -matrix.
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4.6 Corollary:

If (1) has a unique solution for each q ¢ R" , then any principal

subproblem of (1) has a unique solution for each of its right-hand side

constant vector.

4.7 Note: It is not possible to generalize Corollary 4.6 by dropping
the condition of "uniqueness” of the solution to (1). As an example, let

M= (-1 2) . Then the problem is to solve

2 -1
(=) (k)= ()
v, 2 -1 z, 9,
w>0,z2>0, sz =0

(13)

In the diagram below, we indicate each complementary cone by drawing

a dotted line segment running across its generators.

We see that the union of the complementary cones is the whole space, Rz c
So by 2.10, (13) has a solution for all q € R2 . So M 1s a Q-matrix.

Now let us examine the principal subproblem of (13) in Wy s 2y o It is
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v, = (-l)z2 = q, .
(14)

0 =0

v

» WaZy

(14) has no solution if q, < 0 . Also we verify that M violates the
hypothesis of Corollary 4.6 because it has three distinct dolutions for every
q in the positive orthant,

4,8 Thus the fact that M 1is a Q-matrix does not imply that its
principal submatrices are Q-matrices.

4.9 Note: After Theorems 4.2, 4.3 were conjectured and proved as
described here, a theorem by Smelson, Thrall and Wesler [12] on the partition
of R" by convex cones which is equivalent to Corollary 4.5 has come to
our notice. Their proof is geometric and not based on the mathematical
programming approach.

The property of "uniqueness' of the solution to (1) also affects the

nature of the solution. This is discussed below.

4,10 [heorem:

Suppose M has the property that (1) has a uﬁique solution for each
q € R" . Keep Aps sevs Q fixed but let q, vary. Let zl(ql) be the
value of z, in the solution to (1) as a function of q - Then zl(ql)
is monotonic decreasing in 9 and it is strictly monotonic decreasing in

the region in which it is positive.

Proof:
Proof by contradiction. Let Q = (qz, 5400 qn)T which is held fixed.

Pick any value for 9 and let B8 > 0 be arbitrary. Let (w;z) be the

q .
solution to (1) when q = (-?%-) , (w;z) be the solution to (1) when

e e g B A
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() ’ :
9=\ - Then zl(ql) =z and zl(ql +8) =2z . Let

H

€

- DEU : - S~ 1S
= (w29 sy wn) ’ E - (22, veay Zn)

€

= (wz, RN wn)T , £ = (22, cees ;n)T
and

T
L (m21, v mnl) "

-~ - Y

If zy > 0 we wish to show that 2z, < z) . Suppose not, then

zy 2% >0 . By complementarity W= m 0 . Then, if

q1 + B + mllzl

Q= | ~—meccanns—=

0+ m 12

(1) has two solutions, namely

and

contradicting the uniqueness of the solution to (1) for each q ¢ R" . So if
zl(ql) >0 then zl(ql + 8) < zl(ql) for any 8 > 0 .
It remains to be shown that if zl(ql) = 0 then zl(q1 + 8) =0 for

all B > 0 . Suppose not, then zl(ql) -z - 0 and zl(q1 + B8) = z, > 0.

. - (w1+8) (0) A
w; 2z and we|-=x---] , 2z = (-x-) =2
w 13

which is again a contradiction.

B R o . o
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4,11 We now show that if M 1s a Q-matrix and (1) has a unique
solution when q 1s any element of the set

{1.1,1.2, ceen I3 M0y ee, -M-n} , then M is a P-matrix.

N
4,12 Theorem:

Let

[zj] = union of all complementary cones which contain -M_J as a
generator
[wj] = union of all complementary cones which contain I-j as a

generator.,

If I°j ¢ [zJ

Q-matrix, then M 1is a P-matrix.

] and -M-j ¢ [wJ] for each j=1 to n and M is a

Proof:

4.13 Let N be the principal submatrix of M of order (n-1) ,
obtained by striking off the first row and column of M . We will now show
that N is also a Q-matrix.

Suppose not. Let w = (w2, 00 wn)T and £ = (zz, o O F zn)T . Consider
the principal subproblem in (w,£) , which is to solve

w- N =@

r (15)
w > 0, ¢ > 0, wg=0.

1

If N is not a Q-matrix there exists a Q¢ R™" such that when Q=17,

(15) has no solution.
Let q = (-;T) . If (1) has a solution (w,z) when q = q , then

;1 >0 1in it, as otherwise (w,£) would be a solution to (15). Thus every
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point on the line

z. >0 . Since

corresponds to only complementary feasible solutions in which 1

there are only a finite number of complementary cones and each one is convex,

there must exist an ao such that the half-line

a
{q 1 q= <-1?:> + 61 1° 8.2 0}
D c

lies entirely .n a complementary cone. By the above argument, in every

complementary feasible solution corresponding to any point on this half-line

we must have z, >0 . This implies that this half-line lies in a complement-

ary cone for which -M , is a generator. This implies that Pos(I_l} also

lies in the same complementary cone, 1i.e., I.1
So N must be a Q-matrix. By a similar argument we conclude that all

principal submatrices of M of order (n - 1) must be Q-matrices.

4.14 Let N be the principal submatrix of M of order (n - 2)

obtained by striking off the first two rows and columns from M . We will

now show that N must be a Q-matrix also.

Suppose not. Then there exists a Q¢ R™ “ such that the subproblem in

(w3, olo I wn s z3, 330 zn) has no complementary feasible solution when its

right hand constant vector 1is Q.

Let

3= y (16)

Then for any A,u real, (1) has no solutions in which both zy and z,

€ [21] , which is a contradiction.

e - 3 a
EOYPrn . R . .
BT N RO S R YO ety . P
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are equal to zero, when q = a by 2.23.

4.15 Fix A = Al, Y where A, > 0 and > 0 and consider the

1 ]
line

(!ll

q:q={ ay , @ Treal) ,

q

Points on this line have complementary feasible solutions in which both z,

and 2z, cannot be zero together. Since the number of complementary cones

2

is finite and each is convex, there must exist an @, such that the entire
half-1line

al
qQ:q=f oy },a> L (17

-

is in a complementary cone. Suppose this half-line is in the complementary

cone Pos{I.l,-M.z,A.3, cens A-n} . Then

\Ig*+ T, € Pos{I [,=M A 4, ooy A}

1 '1 n
Suppose
n
MI g+ uI, =l o +a(-M,)+ 323 ah

where @1slay eeey A 2 0.

If a, > ) , then if we put (A,u) = (O,ul) , @ of (16) will have a
complementary feasible solution in which both 2, =2z, = 0 , which is a
contradiction to 4.14.

If a; <y, then (Al - cxl)I.1 +u I, lies in t - intersection of

Pos{-M.z,A.a, 311 A-n} with Pos{I.l,I.z} . We note that Pos{I.l,I.z}




{
¥
z.
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cannot entirely lie in Pos{—M.z,A_3, ceey A-n} because then I , ¢ [21]

and I, € [z contradicting the hypothesis. So POS{I.l’I.z} and

2 2]
Pos{—M.z,A_3, Led; A-n} intersect in a half-line and when (XA,u) 2 0 unless

A,y are such that

we have

AI.l + uI.2 ¢ Pos{I.l,-M.Z,A.3, % h A_n} .

Similarly we see that for (A,u) >0 1if AI.l +ul, is contained in
a complementary cone Pos{-M.l,I.z,B.3, cees B-n} » then AI , +uI , must
lie on some half-line in Pos{I.l,I.z} :

Hence when (Al,ul) > 0, unless (XlI.1 + “11-2) lies in the union of
a finite number of half-lines in Pos{I.l,I.z} , the half—liné in (17) can
only be contained in a complementary cone for which both -M-l and -M.Z
are generators. This implies that all the points in Pos{I.l,I.z} excepting
those lying on a finite number of half-lines belong to the union of all
complementary cones containing both -M_l and -M_z as generators. But
this union is a closed cone and if it contains all points of Pos{I.l,I.z}
excepting those lying on a finite number of half-lines, then it contains
} . This implies that I lies in some complementary

2 ‘1

cone which has both -M.l and -M.2 as generators, which is a contredictics

all of Pos{I'l,I

to the hypothesis.
So N must be a Q-matrix. By a similar argument we can show that
every principal submatrix of M 1is a Q-matrix. Hence all the elements in the

principal diagonal of M must be strictly positive.

tew

it R — ‘: E— " -
:“-———» . e ] ik .
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From the hypothesis of the theorem we see that every matrix M , obtained

from M by performing a series of principal pivots (as in 2.20) has the

property that all

its diagonal elements are strictly positive.

By Tucker's theorem [15] (see also Lemma 6.1 in (11]) this implies

that M is a P-matrix.

4,16 Note:

It may be possible to use Theorem 4.12 to develop an

efficient algorithm for testing whether a given real square matrix M is

a P-matrix or not.
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5. ON THE Q- NATURE OF NONNEGATIVE MATRICES

5.1 Suppose the square matrix M 1is nonnegative, i.e., mij >0
for each 1 and j . This case is of particular interest because the
problem of finding a Nash equilibrium point of a bimatrix game can be
formulated as a problem of the form (1) in which M > 0 . See [1]. It
is of interest to know when such a matrix is a Q- matrix. The following

theorem discusses this question.

5.2 Theorem:

Let M>0. M 1s a Q- matrix if and only if mey > 0 for each

1-1, ....ﬂ.

Proof of Sufficiency:

This has been proved by Cottle and Dantzig [1] in a corollary under

their Theorem 5.

Proof of Necessity:

Proof by _.duction, Suppose n=1. If M= (mll) = 0 then for
q=- (ql) < 0, (1) has no solution. So the theorem is verified for n =1 .,
Suppose the conditions of the theorem are necessary for all problems
of order (n - 1) or less. We will show that they are then necessary for
n also. Let M > 0 be a square matrix of order n , with at least one

o equal to zero. Without any loss of generality we can assume that

11
" 0.

Consider the principal subproblem of (1) in the variables

T T
W= (wl, ceey wn-l) , E = (zl, - zn—l)

.._..J.~Li& eanisiik bl m . .-..-:-L; R —— M
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The matrix corresponding to this subproblem is nonnegative with a zero
element (m11 = 0) in its diagonal. So by the induction hypothesis, there
exists a § = (51’ TN En—l)T such that this principal subproblem of (1)
has no solution when its right-hand side constant vector is Q . Let

an >0 and q = (-?b-) . When q =q , (1) has no solution because
q

n

(1) 1If (1) has a solution at all, say (w ; z) then ;n ¥ 0 , since
;n = 0 implies that (w ; £) solve the principal subproblem
contradicting the manner in which Q was obtained.

(11) So z > 0 . But by (1) v, "M z+q > 0 because

un.;o,E;o,an>o.

So if (1) has any solution at all, both LA must be positive in it
which violates the complementarity constraint.
Then (1) has no solution when a is obtained as above. So the theorem

is true for n . By induction, it is true for all n .

5.3 Proof of Theorem 5.2 by Example:

Suppose m, = 0 . Then if

!! = (-1.1’1. es ey l)T .

Then using the fact that M > 0 it is easily verified that (1) has no

solution wvhen q = q . This example is given by Gale.

5.4 Corollary:

If M>0 and M is a Q-matrix, then all principal submatrices of M

are also Q-matrices.

— S e, ) (O P g D = B e S
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6. ON THE CONSTANT PARITY OF THE NUMBER OF COMPLEMENTARY

|
|
!
’ FEASIBLE SOI.UiiGNS:
i 6.1 We will now examine how the number of solutions to (1) varies
: l as q varles over R" while M 1is fixed.
6.2 Theorem:
If M is nondegenerate, then the number of complementary feasible
solutions has the same parity for all q € R" which are nondegenerate

with respact to M.
Proof:

In the proof of this theorem we will use some of the results proved

by Lemeke in [7].

6.3 Results [Lemkel:

If ; is nondegenerate with respect to M
(1) Then (1) has a finite number of solutions when q = ; .
(11) For each i =1, ..., n , the almost complementary set
Ci(;) is either empty or is the union of some edges (bounded
or unbounded) of K(;) s
(111) The number of unbounded edges in Ci(;) differs from the number

of solutions to (1) by an even number.

6.4 We will now prove that 1if M 1is nondegenerate and gq ¢ R" then

w, 1s unbounded on every unbounded edge of Ci(q) « Suppose F 1is an

i
unbounded edge of K(q) contained in Ci(q) . Let

Fa {(wiz): (wiz) = (ub + 6w’ ;25 + 629, 0> 0}

J - =R S S A R ——
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where (wl;zl) is a basic feasible solution and (wz;zz) is av extreme

homogeneous solution of K(q) .

Along this unbounded edge F , w, = w1 + ew2 , and it remains bounded for

i i i
all 6 >0 only if wi =0 . If wi = 0 , then 1f we put q = q - wil'i ’
(1) has an infinite number of solutions, namely
w= wl - wil_i + ew2 ; 2 = z1 + 622 for all o6 > 0

which is a contradiction to the hypothesis that M is nondegenerate by
Theorem 3.2,

Thus, on every unbounded edge of Ci(;) » Wy is urbounded.

6.5 We will now use the result obtained in 6.4 to show that if
; e R" is nondegenerate with respect to M and a 1is any real number such

that q = q + oI, is also nondegenerate with respect to M , then the

i
number of unbounded edges in Ci(q) and Ci(q) are the same.
Pick any unbounded edge

F = {(w;z) : (w;z) = (- + ou’ ; 21+ ezz) » 8 20} C Ci(;) .

By 6.4, wz >0 and w, is unbounded on this edge. Let

i i
wi +a
v = Max |0 , o) .
Yy

Then it is easily verified that

F1 = {(w;z) : (w;2) = (w1 + 6w2 + ai.i 0 zl + ezz) y 82 v}
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is an unbounded €. . Ci(;) .

Thus we have shown that there exists an unbounded edge Fl in
Ci(;) corresponding to each unbounded edge F in Ci(;) . Conversely
by treating ; = ; + (-c:a)I'i we can establish a correspondence between
unbounded edges in Ci(;) and those of Ci(;) . This establishes a
1 - 1 correspondence between the unbounded edges in Ci(;) and those 1in
Ci(;) . Hence both Ci(;) and Ci(;) must have the same number of
unbounded edges.

6.6 Now to continue the proof of Theorem 6.2, let & and q be any
two column vectors in R° both of which are nondegenerate with respect
to M.

By 6.5 and (1), (ii1) of 6.3 we conclude that the parity of the
number of solutions to (1) does not change if we alter the vector q one
component at a time so that it remains nondegenerate with respect to M
both before and after the alteration.

It is always possible to alter ; » by one component at a time,
retaining the property of being nondegenerate with respect to M throughout,
until it becomes equal to a 4

Hence the number of solutions to (1) has the same parity whether
q- ; or q . Hence the number of solutions to (1) has the same parity
whenever q 1is nondegenerate with respect to M .

6.7 Note: The assumption that M 1s nondegenerate cannot be dropped

from the hypothesis of Theorem 6.2, as can be seen from the example below.

01

1 2] Then (1) 1is to solve

Let M = (




W) e Wy 27 2 >0, w124 + WoZy = 0.

q= (i) leads to one solution to (1) and q = (:2) leads to two solutions

to (1) eventhough both these are nondegenerate with respect to M here.
Here M 1is not nondegenerate because the matrix (1-2’.M-1) is
singular. The argument in 6.4 fails.
6.8 Note: The assumption that q 1s nondegenerate with respect to
M cannot be dropped from the hypothesis of Theorem 6.2 as can be seen from

the example below. Let M = (; i) .
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When q 1s nondegenerate with respect to M the number of solutions to
(1) is an odd number, but when q = -M.2 » (1) has exactly two distinct
solutions.

6.9 Corollary:

If M 1is nondegenerate and not a Q- matrix then the number of
solutions to (1) is an even number for all q which are nondegenerate

with respect to M .

6.10 Proof:

By 2.10, the set of all q for which (1) has a solution is the
union of the 2" complementary cones. Each complementary cone is a closed
set in R" and hence their union (being a union of a finite number of
closed sets) is itself closed. The set of all q for which (1) has no
solution is the complement of this union, and hence is an open set. Because
M {s not a Q-matrix, this open set is nonempty. So the set of all ¢

for which (1) has no solution is a nonempty open cone.
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6.11 By 2.16, the set of all q which are not nondegenerate with

respect to M 1s the union of a finite number of subspaces of R" , each

of which has dimension < (n-1) . Hence the set of all q which are not

nondegenerate with respect to M has no interior.

6.12 By 6.10 and 6.11 we conclude that there must exist a ¢

nondegenerate with respect to M , for which (1) has no solution, i.e.,

zero solutions. Now by applying Theorem 6.2 we conclude that the number

of solutions to (1) has the same parity as zero, i.e., even parity, whenever

q 1s nondegenerate with respect to M .

6.13 Note: Corollary 6.9 is not necessarily true if M is not

nondegenerate as seen from Example 6.7.

6.14 Note: The converse of Corollary 6.9 is not necessarily true

unless M > 0 . This is discussed in 8.17.

R ST AR




7. ON PROBLEMS WITH A CONSTANT NUMBER OF COMPLEMENTARY FEASIBLE SOLUTIONS

7.1 Here we show that if the number of complementary feasible solutions

n
is a constant for all nonzero q ¢ R then that constant is equal to one and

M 1is a P-matrix.

7.2 Theorem:

If the number of complementary feasible solutions is a constant for all

q€ R" »  #0 , then M {is a P-matrix and that constant is equal to one.

Proof:

7.3 Whatever M may be, (1) always has at least one solution for every
q 2 0 (the solutionis w=gq ; z=0) . If M is not a Q-matrix, there
exists a q ¥ 0 for which (1) has no solution at all. Hence, if M 1is not
a Q-matrix then the number of solutions to (1) cannot be a constant for all
q ¥ 0. So under the hypothesis of Theorem 7.2, M must be a Q-matrix.

7.4 The number of complementary feasible solutions is finite whenever
q 1is nondegenerate with respect to M . By Corollary 3.3, if M 4s not
nondegenerate, there exists a q # 0 for which (1) has an infinite number of
solutions.

Since the number of solutions to (1) is a constant for any q ¥ 0 , M
must therefore be a nondegenerate matrix. Hence, all the principal
submatrices of M are also nondegenerate. Also, every subcomplementary set
of column vectors is linearly independent and every complementary cone has a
nonenmpty interior.

7.5 Let {A.l, veey A-n-l} be any subcomplementary set of column
vectors. We will now show that the hyperplane generated by this sub-
complementary set of column vectors strictly separates the points

representing the left out complementary pair of column vectors I-n and

-M .
.0

ey
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Suppose not. Then the interiors of the complementary cones

M } have a nonempty

POS(A.I' e ooy A'n-l'Ion} and POS{A.l, ce ey Aon—l,- en

intersection.

Then we pick a pair of points q , q , both nondegenerate with respect to M ,
sufficiently close together, such that q is in the intersection of

POS{A.I. ssey A 1’I.n} 8l‘ld POS{A.I. seey A "'M.n} and q lies

n-1’

outside both these cones and is strictly separated'fram q by the hyperplane

e fl=-

through Pos{A.l. 20 A-n-l} . We can choose

- o=l
q= 3-Z-1 \A gt

where Al’ dodin An-l’a are all > 0, a sufficiently smalln-il, .;.. An,a
are such that q 1is nondegenerate with respect to M and z AjA-j does
b

not lie in any subspace generaired by (n - 1) or less column vectors of

(1,-M) excepting Pos{A.l. T E. } . By the nondegeneracy of q ,

en-1

q+ AnI'n is also nondegenerate with respect to M for all but a finite

numb:r of values of An « So we could pick an a > 0 sufficiently small

such th,c

PSPPIy

R —.
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n-1
q = jzl xjA.j + Bl

'n

is nondegenerate with respect to M for all B satisfying £ #0,

-a, < B < a, - So if we had chosen our original a so small that

0<a<a . and q 1is in the interior of both Pos{A.l, W A-n—l'I-n}

and Pos{A.l, X A'n-l’-M-n} , then

. nzl
a= 1 MA 4ol

j=1

is outside-both these complementary cones and q does not lie in any
complementary cone in which q does not lie. Thus, the number of solutions
he number when q = 4

to (1) when q =4q is8 strictly less (by two) than t

leading to a contradiction.

By a similar argument, we verify that the hyperplane through any

subcomplementary set of column vectors strictly separates the points

representing the left out complementary pair of column vectors.

e g e S
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7.6 We will now show that the principal subproblem of (1) in the

variables (wl, sees W3 Zys eees zn-l) satisfies a similar seperation . !
property. The column vector corresponding to wJ in this subproblem is
the j-th column vector of the unit matrix of order (n-1) , which we denote '

j° and the column vector corresponding to ::.1 in this subproblem is
T
mlj’mZJ’ astent mn—l,j) which we denote by —m.j . We note that the

column vectors in the subproblem are obtained by deleting the last component

by &,

-(

from the column vectors in the original problem. {
Let {a_l, cees B, 198 g1y cres a-n—l} be any subcomplementary set ,

of column vectors in the subproblem. We want to show that the hyperplane

in R“—1 through these column vectors strictly separates (J 1 and “my .

Let A-r be the column vector corresponding to a_r,r-l, rere y [ 152k

i+1, ..., n-1 , in the original problem. Then {A_l, S Ml A-i-l'Aai+1’

ooy A I-n} is a subcomplementary set in the original problem. By

n-1’

f 7.5 the hyperplane in R" through these column vectors strictly separates

| I and -M . . Suppose this hyperplane is

o i
DX =0
where D = (dl, cevs dn) and XeR®. Then
DA-l =0
DA-i-l = 0 o
DI-i >0 and D(.M-i) <0 '
DA.1+1 = 0
DA-n-l = 0
DI =0 . !
°n
-
el BN DAL I
® %
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Now DI-n = dn =0 . Let d = (dl’ 50 O dn-l) . Because dn = 0, the

above equations imply that

da.1 =0

n-1 Rn-l

Let x = (xl, asy X ) e R . Thus dx = 0 1is the hyperplane in

n-1
through the subcomplementary set {a.l, vees B4 198 {40 eees a-n-l}
of the subproblem and it strictly separates { and -m "
Hence the subproblem also satisfies a similar separation property.
By a similar argument we can verify that every principal subproblem of (1)

of order (n-1) satisfies the separation property.

7.7 Induction Hypothesis:

For any complementarity problem of order r < n-1 , with column vectors
(I,-N) , if N 1is nondegenerate and if the hyperplane through every sub-
complementary set of column vectors strictly separates the points representing
the left out complementary pair of column vectors in the problem, then N
is a P-matrix.

7.8 The induction hypothesis is easily verified for the case r =1 .

By nondegeneracy N = (mll) # 0. Since r = 1 , the subcomplementary set
is the null set and hence the hyperplane through the subcomplementary set

is the singleton consisting of the origin itself. Since this separates
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the points on R1 representing 1 and “my, s We should have “myy <0 .
So N = (mll) > 0 and hence is a P-matrix in this case.

7.9 Hence by the induction hypothesis and 7.6 every principal submatrix
of M or order n-1 4s a P-matrix. Hence all principal subdeterminants of
M of order < n-1 are strictly positive.

Since M is nondegenerate by 7.4, determinant of M # 0 . So M-l
exists, So the constraints (1) can be written as

z-M'1w=Q
(19)

z>0,w>0, sz =0

where

-1
Q--M qo

If (1) has a constant number of solutions for every q ¢ R" 2 G0,
then (19) has a constant number of solutions for each Q ¢ R" , Q¥ 0.

Hence by the arguments used previously all principal subdeterminants
of M-l or order (n-1) or less are strictly positive. Let a be the
value of the principal subdeterminant of M-l obtained by striking off

the first row and column from M-l . Then

1

- determinant of M

a : (20)

But >0, m, > 0 . So by (20) the determinant of M 4is also strictly
positive. So all principal subdeterminants of M are strictly positive.
Hence M 1is a P-matrix.

So the induction hypothesis 7.7 holds when r = r also. It has been
verified for r = 1 in 7.8. So by induction it hclds for all n .

Hence by 7.5, Theorem 7.2 is true for all n .
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8. THE ODD NUMBER THEOREM FOR NONNEGATIVE Q-MATRICES:

8.1 Here we show that if M is a nonnegative Q-matrix, then the
number of complementary feasible solutions is an odd number whenever q 1is
nondegenerate with respect to M . This result may not hold if M is not
nonnegative,

8.2 Theorem:

If M > 0 and is a Q-matrix, then the number of complementary feasible
solutions (s an odd number for any q nondegenerate with respect to M .

Proof:

Proof is by induction on n .

8.3 If n=1, then M= (mll) and M 1is a Q-matrix if and only if .

m, > 0 by Theorem 5.2. Here q = (ql) and for each q ¢ R1 there is

1

exactly one complementary feasible solution. Hence Theorem 8.2 is true

: when n =1,

8.4 Induction Hypothesis:

B S T vy

Suppose Theorem 8.2 is true for all complementarity problems of order

(n-1) or less. We will now show that this implies that Theorem 8.2 also

— g e

holds for problems of order n .
8.5 By Corollary 5.4 all principal submatrices of M are also Q-matrices.

Consider the principal subproblem in (wz, ceey W

A D zn) with

the right hand constants = Q ., If Q is nondegenerate in the subproblem,

r
e L R T

then it has an odd number of complementary feasible solutions when Q = Q .

by the induction hwpcthesis 8.4.




- q
Llet q = (—1;—) where 9 > 0 , be nondegenerate with respect to M .,
Q

l Since q, > 0O and M >0, the variable z, must be equal to zero in

1
[ and solution to (1) when q =q . Thus if (w;z) 1is a solution to (1)

-~ -

when q =gq , z, = 0 and hence (wz, rees W3 2oy ey zn) is a complementary
feasible solution to the subproblem when @ = Q .
Also 1f (w%, ..., w; 5 z;, o5 z:) is any complementary feasible

solution to the subproblem when @ = Q , define

n
X = *
wvi=q + JZZ mljzj >0

and then (v;,w*

oo w: s 0RZ %L o A, z:) is a complementary feasible

2
solution to the orifinal problem when q = a q
Thus cvery complementary feasible solution of the original problem ;
leads to a complementary feasible solution to the subproblem and vice versa.
Hence bot: ~olems must have the same number of complementary feasible
solutions. Hence when q = q , (1) has an odd number of solutions.
By a similar argument we conclude that the original problem has an
odd number of complementary feasible solutions whenever q 1s nondegenerate

with respect to M and at least one component in the vector q 1is positive. E

It only remains to be shown that the same result holds even when

q<0.

8.6 We will now show that on every unbounded edge of K(q) 1lying in .
the almost complementary set Cl(q) » both the variables vy and z, '
tend to += , while Zyy cees z. remain finite.

From 2.5, K(q) 1is the set of all (w;z) satisfying

|
vy " Mi- z + q > i=1, ..., n .
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Since M 1s a Q-matrix, my >0 for all i=1, ..., n by Theorem 5.2.
Consider any unbounded edge of K(q) . If all the variables

z sees 2o remain finite on this edge, then by (21) all the variables

1’

Wys eeey Wo also remain finite and hence the edge cannot be an unbounded

edge. Hence, on evefy unbounded edge in K(q) at least one of the

variables

00 zn must tend to +~ , If zi tends to <+« on this

Zys -
edge, then from (21) and the facts that M > 0, me, > 0 and ay is
finite and fixed, vy must also tend tc +~ along this edge. Hence if
any unbounded edge of K(q) 1lies in the almost complementary set Cl(q) ,
then the variables Zgy ceen Z should all remain bounded on that edge.
Hence 2y must tend to += on that edge and consequently vy also tends
to += on that edge.
Thus on every unbounded edge in Cl(q) , the variable Wy vt
8.7 Suppose ; is nondegenerate w’''lL respect to M . Then there exists

an a > 0 such that for all a > @ the point q - aI'l is nondegenerate

with respect to M . Hence the entire half-line
{q:q=gq- mI.1 , @ > ao} ' (22)

lies in the interior of a set of complementary cones. We now show that the
number of complementary cones in which this half-line lies is precisely the

number of unbounded edges in Cl(q) 3 Leg
Fu {(w;2) ¢ (w;2z) = (w1 + ewz;z1 + 622) » 82 0}
be an unbounded edge in Cl(q) . Then

1 2(1 2)_
(wi + ewi) z + 02, ) = 0 for all 1 #1

for all 8 > 0 *

and wi >0 by 8.6. Hence ]




(w;2z) = (0,w1+0w2

1 2 1 2)
2 2° +921, ceey zn+ezn

1 2
50 o) wn+6wn s zl

is a complementary feasible solution for

= 1 2)
q=gq - (wl + Gwl I-l for a11 6 >0

and since wi >0, as 6 varies from 0 to =

SRR I
{q tq=gq (wl + ewl I.1 s 620

is eventually the same half-line as in (22).
Also for any a > a s 9q- EI.I cannot lie in any complementary cone
which has Pos{I.l} as a generator. For, if it does, there exists a

subcomplementary set of columns {B ,, ..., B _} such that
«2 °n

for some XAy, ..., A 20 . Then gq - (a + A)I,, lles in the subspace
through the subcomplementary set {B-Z’ 00 O B~n} contradicting the
assumption that q - aI.l is nondegenerate with respect to M for all
a>a .

o

Hence if the half-line in (22) lies in some complementary cone, say,
Pos{A.l,A.z, | A-n} then A'l' ooy A must be linearly independent

and A B = -M Then we can express this half-line as

1 Col

{ ? . E A
q:q= BA, + (a-a ) B/A, ,a>a
a1 1.4 o 1=1 1.4 o

for some B1 - 82 >0. Thus

45
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- § 1 n o, ’
q=ol .+ JBA,+(a-a) JBA (23)
| 1 i=lii °i=lii )
k’l | :
. for any a > a
r r 1 2
Suppose (w ;z ) 1is obtained by setting wp=ag s w s 1, and the
variable associated with the column vector A'i equal to B; g 141, ..., n
and all the other variables in (w;z) equal to zero, for r = 1,2 . Then

(22) implies that
Fe= {(w;z) : (w;2)= (w1 + 9w2 H zl + 922) y 82 0}

is an unbounded edge in Cl(;) .

Thus every unbounded edge in Cl(;) gives raise to a complementary
cone in the interior of which the half-line in (22) lies and vice versa.

- Hence the number of unbounded edges in Cl(;) is equal to the number of
complementary feasible solutions for a - c:I.1 where o 1is a sufficiently
large number.

8.8 Thus for any 9 such that a = (ql,az, 0dop ;n)T is nondegenerate
with respect to M , the number of unbounded edges‘in Cl(a) is a constant.
This number is equal to the number of complementary cones in which the half-
line (22) eventually lies as ag is made large.

8.9 By the nondegeneracy of al we know that there exists a B° such

that for all B8 > B° . (B,qz, ST qn)T is nondegenerate with respect to M .

Hence we can always pick a qf > 0 such that gq* = (qI,az, g ;n)T is
nondegenerate with respect to M . Since qf > 0 , the number of complementary
feasible solutions when q = q* 1is an odd number. Therefore by 6.3(iii) the
number of unbounded edges in Cl(q*) is an odd number and hence by 8.8 the
number of unbounded edges ia Cl(;) is an odd number. By 6.3(ii1), the

number of complementary feasible solutions when q = q 1s therefore an odd

number.
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§ Hence under the induction hypothesis, Theorem 8.2 holds for the original
L problem of order n . By 8.3 and by induction, Theorem 8.2 is true for all n .
8.10 Corollary:
If M 1is a Q-matrix and if there exists a complementary set of column
vectors {A-l’ FER A-n} which is linearly independent, such that each of
the remaining vectors B-l’ 0000 B-n among the column vectors of (I,-M)
satisfies
B-j € Pos{-A.l, 5 1 —A.n} for all j =1, ..., n
then the number of complementary feasible solutions is an odd number for all
q which are nondegenerate with respect to M .
»
Proof:
f Transform the column vectors A-l’ ooog A-n into the column vectors of
the unit matrix by making the necessary principal pivots. Then Corollary
8.10 follows from Theorem 8.2 and 2.21.
8.11 In the special case when n = 2, the restriction that M > 0 can
be removed from the hypothesis of Theorem 8.2. This is discussed below.
8.12 Theorem:
If n=2 and M 1s a Q-matrix then the number of complementary
feasible solutions is an odd number whenever q 1s nondegenerate with respect
to M.
Proof:
]
8.13 (Case 1: If Pos(-M.l,-M.z} 1s a subset of the nonpositive orthant
& of R2 , Theorem 8.12 follows from Theorem 8.2.
8.14 Case 2: If Pos{-Iol,-Iz} C.Pos{-M.l,-M_z} the hypothesis that
M 1is a Q-matrix implies that -M-l and -M_Z are contained one each in
‘ Pos{I'l,-I.z} and Pos{-I.l,I.z} respectively.

s PRI Kuth b SO ANAATSEA @




We verify that in this case the numher of complementary feasible solutions
is 1 or 3 for every q nondegenerate with respect to M .
8.15 Case 3: Since M 1is a Q-matrix, the only other possibility is

that exactly one of -M 1 or -M 9 is contained in the interior of

1,—1 2} . Suppose it is -M 1 Then the hypothesis that M 1is a

Q-matrix implies that either -M , ¢ Pos{I.l,M.l} or -M , € Pos{I.l,-I.z} .

Pos{-1

L 4
-

In either case we verify that the number of complementary feasible solutions

is either 1 or 3 for all q nondegenerate with respect to M .

— - - e e o S T = — g S iy b i =3 o b

5 =
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8.16 Corollary:

If n =2, there exists a q nondegenerate with respect to M , for
which the number of complementary feasible solutions is at most one.

8.17 Note: When =n > 3, Theorem 8.2 is not necessarily true if
M i 0 , and Corollary 8.16 may not te true,

As an example consider

-1 2 2
M= 2 -1 2}.
2 2 =1

It can be shown that this is a Q-matrix by verifying that the union of all
the 8 complementary cones is R3 . Also M 1is a nondegenerate matrix. We
verify that ; = (1,1,1)T is nondegenerate with respect to M . When q = ;
there are four distinct complementary feasible solutions, because ; lies
in each of the complementary cones Pos{I_l,I.z,I.3} . POS{-M-I’I-Z’I-B} ,
Pos{I.l,—M.2,1.3} and Pos{I.l,I.z,-M_3} and in none of the others.

By Theorem 6.2, the number of complementary feasible solutions is an
even number for all q nondegenerate with respect to M , and since M {is

a Q-matrix, this number must be > 2.

This shows that the converse of Corollary 6.9 is not necessarily true

unless M 2 0.

8.18 Note: When n > 3 , the number of complementary feasible solutions
can be aE'Z for all q ¢ R® . The example in 8.17 shows this. Thus when

n > 3 the complementary cover can span the whole space more than twice

around.
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